

microFAST SingleCell

Complete Solution for Single Particle and Single Cell ICPMS Applications

Automated sample introduction system for NexION ICPMS

Biological Size Scale

Biological Size Scale

The micro*FAST* SingleCell automation system delivers single nanoparticles or single cells intact to the ICPMS. Once the NPs or cells enter the plasma they are vaporized, atomized, and ionized. The resulting elemental content is detected by the mass spectrometer.

100 µm

Single Cell ICPMS

The ability to introduce single cells into an ICPMS and measure the elemental content in each cell, or tagged to each cell, accurately takes a dedicated, well-designed sample introduction system. Having this ability allows for investigators to better understand how much of a specific nanoparticle, metallodrug, or metal-based compound enters the cell. These cells or nanoparticles will vary in size from a few nm's up to a few 100 µm's. The typical cell types of interest will vary and with that the stability of the cell-line also varies, such that a gentle, controlled nebulization must be employed in order to not disrupt or lyse the cell.

Single Cell ICPMS Requirements

- Flexible sample volumes µL to mL of sample
- Ensure cells stay intact, no cell lysing
- Low pressure sample introduction
- High transport efficiency

Elemental Scientific has developed a complete sample introduction system designed specifically for single cell and nanoparticle applications. This system consists of:

- microFAST SingleCell Autosampler
- CytoNeb single cell nebulizer
- CytoSpray single cell spray chamber

microFAST SingleCell

microFAST SingleCell Automated Sample Introduction System for NexION ICPMS Part Number: MF-SC2-64

CytoNeb and CytoSpray

CytoNeb

- Meinhard high efficiency nebulizer
- Designed to efficiently nebulize single cells without cell rupturing
- Low internal volume
- Low backpressure (1-50 µL/min = <50 psi)
- Low dead volume
- Patented inert PFA quick connects for nebulizer gas and samples lines

CytoNeb and CytoSpray

CytoSpray

- High-transport efficiency
- Separate make-up gas for better transport efficiency
- Includes one-piece ICPMS torch for simple and direct connection to the CytoSpray

• Spray chamber designed specifically for single cell and nanoparticle applications

microFAST SingleCell System

AuNCs:anti-h-HIF-1α Intensity (cts) Example of how gold nanoclusters (AuNC) can be used to tag proteins and determine how much of a specific protein

Time (s)

microFAST SingleCell System

microFAST SingleCell flow path with syringe carrier and sample loading

The microFAST SingleCell system has been built for performance by optimizing the inner diameter (ID) and line lengths to ensure a quick sample transfer from vial to ICP torch.

- Fast sample-to-sample times. For example, at 20 µL/min flow rate:
- <3 min, when utilizing a 30 s ICPMS measurement time
- <4 min, when utilizing a 100 s ICPMS measurement time
- High-flow sample loop washout
- Simple conversion for total metal analysis using FAST system
- Vacuum or syringe sample loading
- Micro or large sample volume capabilities

is in each cell.

NexION Method Setup

Analysis Options

3		• (5 4									Syn	gistix [™] for ICP-M	S - Instrument	Control Sessi	ion	
9	Nar	ю.														
nalys	is Resu	Its Exit														
Sa	mple	TE Batch														
cquis	ition - (:\Users\Public\Docume	ents\PerkinElmer Sy	ngistix\ICPM	S\Nano\Batch\mfSC- Pt	- Template.nbat	[Modified]			Method -	C:\Users\P	ublic\Documents\P	erkinElmer Syng	tistix\/ICPMS\/N	an\Pt Nanopa	rticles.nmth
										Para	meters	Calibration	Pump Setting	ys Samp	ling Device	Adv.Para • •
_						Sample Te	mplate	Advan	ced	Analyte	Scan N	Iode Q1 Mass	Q3 Mass (amu)	Density (a/cm ²)	Mass Fraction	Ionization
	A/S Loc.	Sample ID	Measurement Action	Replicates	Method	Dataset Folder	Analyte	Dilution Factor	Samp * Rate (Pt	MSMS	 ▼ 194.965 	194.965	21.09	100	100
9	6	50nm Pt Sample-1	Run Sample	1	Pt Nanoparticles.nmth	Browse		1	0.01		-	Helium	Oxygen	Ammo	onia	
10	6	50nm Pt Sample-2	Run Sample	1	Pt Nanoparticles.nmth	Browse	-	1	0.01	P	ronie	(mL/min)	(mL/min)	(mL/n	nin)	юч
11	6	50nm Pt Sample-3	Run Sample	1	Pt Nanoparticles.nmth	Browse	-	1	0.01	Standa	rd	0	0	0	0	0.25
12	7	70nm Pt Sample-1	Run Sample	1	Pt Nanoparticles.nmth	Browse		1	0.01		CM.	Fixed QI		typerskimmer	0	mniRing
13	7	70nm Pt Sample-2	Run Sample	1	Pt Nanoparticles.nmth	Browse	~	1	0.01		UNI	(V)		(V)		(V)
14	7	70nm Pt Sample-3	Run Sample	1	Pt Nanoparticles.nmth	Browse	~	1	0.01	Extract	ion		2.5		-210.0	2
15							-			Dwell	Time (µs)	50	Scan Time (s)	100	AFT (V)	
-	Jse Sm	art Sampling							•	Conditio	ons File De	efault_dac			1	Browse
	ood	Saua	New	Clear				Analyze	Batch	Load		Sawa M	low			

Setup: Advanced Options

Sa	mple	TE	Batch						
quisi	tion - C:	Users\P	ublic\Docum	ents\PerkinElmer Sy	ngistix\ICPM	IS\Nano\Batch\mfSC- Pt	- Temp	late.nbat [Modified]	M
							Sar	mple Template Advanced	6
	A/S Loc.	Sa	mple ID	Measurement Action	Replicates	Method	Datas	Section Advanced Options	
9	6	50nm	Pt Sample-1	Run Sample	1	Pt Nanoparticles.nmth	Brows	Override Thresholds	1
10	6	50nm	Pt Sample-2	Run Sample	1	Pt Nanoparticles.nmth	Brows	Sigmas Counts	
11	6	50nm	Pt Sample-3	Run Sample	1	Pt Nanoparticles.nmth	Brows	Pt 105 V 3-sigma	
12	7	70nm	Pt Sample-1	Run Sample	1	Pt Nanoparticles.nmth	Brows		
13	7	70nm	Pt Sample-2	Run Sample	1	Pt Nanoparticles.nmth	Brows		
14	7	70nm	Pt Sample-3	Run Sample	1	Pt Nanoparticles.nmth	Brows	Size Histogram Bin Size	
15								Fixed Range for Size Histogram	
1								Start 0 nm	
<u> </u>	Jse Sma	rt Samp	ling					End 10000 nm	
Lo	oad	S	ave	New	Clear			OK Cancel	L
ealtir	ne Signa	I.							F

NexION Method Setup

Sample List

Result	Results Table												
		Sample	Analyte	Most Freq. Size (nm)	Mean Size (nm)	Median Size (nm)	% <100nm	Size LOD (nm)	No. of Peaks	Mean Inten. (counts)	Part. Conc. (parts/mL)	Diss. Inten. (counts)	Diss. Con (ppb)
- 14		STD1	Pt 195									3.34	
▶		STD1	Pt 195						890	53.55		0	
- >		Sample	Pt 195	30	32	31	100	15	2984	13.28		0.01	0.014
		Sample	Pt 195	31	33	31	100	15	3181	13.59		0	0.012
- P		30nm Sample-3	Pt 195	31	32	31	100	15	3232	13.18		0.01	0.013
- >		50nm Sample-1	Pt 195	53	53	53	100	15	1078	55		0	0.004
		50nm Sample-2	Pt 195	54	54	54	100	15	1120	57.59		0	0.004
- >		50nm Sample-3	Pt 195	54	54	54	100	15	1138	56.88		0	0.002
>-		70nm Sample-1	Pt 195	80	81	81	98	15	397	186.09		0	0
>-		70nm Sample-2	Pt 195	80	80	80	98	15	407	181.52		0	0
		70nm Sample-3	Pt 195	81	81	81	97	15	372	188.16		0	-0.001
- 20		BLK-1	Pt 195					1				0	0.002
~ 10		BLK-2	Pt 195					1				0	0.001 🖵
4													

Example Histogram

		Histogram	RealTime				
50nm Dt	Mean Size	Histogram - 50nm Sample-1					
Juini Ft	(nm)	Histogr	Histogram - Som Sample-1 Histogram Options 60 50 40 30 20 14 24 55 14 24 Histogram RealTime				
Run 1	53	60 50					
Run 2	54	40					
Run 3	54	20 10					
		0					
Average	53.7	50 30	14	24			
STD Dev.	0.6						
%RSD	1.1	Histogram	RealTime				

Single Cell Introduction Kit Performance

Backpressure was recorded for each sample flow rate using DI water, 1X PBS, or 50 mM Tris buffer as the carrier solution. Larger ID tubing can be substituted to achieve lower backpressures.

Backpressure was recorded for varying nebulizer gas flow rates using 10 and 50 µL/min sample flow (DI water as the carrier solution).

Nanoparticle Performance

50 nm Au NPs

Typical Transport Efficiency for 50 nm Au NPs = ~80% or greater

Ten 50 nm Au NPs were prepared under the same conditions and analyzed over an 8-day period. above shows the average response for all data points and the ±2 SD.

Samples were sonicated before each day's analysis. Data points represent the average response for each sample over the 8 days. Error bars represent ±1 standard deviation (SD) over the 8 days. The plot

Single Cell Performance

Ta-Tagged PBMC

Elemental

Scientific

PBMC = peripheral blood mononuclear cell

Ta-Tagged cells were prepared in PBS buffer. The plot above demonstrates replicate measurements from a single sample. Cell transport efficiency will vary depending on cell type and cell stability.

Advantage of the microFAST's Sample Mixing Method

Particle count for 50 nm Pt NPs analyzed over a 2 h time period from 20 identically prepared samples in separate vials using the no mixing method. The analysis time was set to ensure the 20 samples took 2 h to complete.

using the mixing method. The analysis time was set to ensure the 20 samples took 2 h to complete.

Mixing Method – Particle Count Stability over 2 hours (n = 20)

Particle count for 50 nm Pt NPs analyzed over a 2 h time period from 20 identically prepared samples in separate vials

micro*FAST* SingleCell Features

micro*FAST* SingleCell Features

Optional ULPAclean 10 Filter

• Removes 99.9995% of airborne particles

Exhausted Enclosures

• Three side easy access doors

Fluoronetic Rail

True fluoropolymer mechanical action
 Magnetically coupled linear drive
 Chemically resistant and long-lived

AutoAlign Arm

• Self-realigns after encountering capped sample tube

Tapered Probe

Optional FluoroWand Arm

Dual Pumped Rinse Station

Low rinse consumption
 Two rinse solutions

microFAST SingleCell Autosampler

SystemPart NumbermicroFAST SingleCell AutosamplerMF-SC2-64

Sample Introduction Kit

Kit	Part Number
Single Cell Sample Introduction Kit for NexION ICPMS	SC-SI-64

*Torch not included with ESI's sample introduction kit. We recommend using PE's fixed 2.0 mm injector UHP quartz torch (N8152428).

FAST Conversion Kit

Kit

Includes ICN50-64 nebulizer to use with instrument standard spray chamber to run *FAST* sample analysis on the micro*FAST* SingleCell autosampler

Part Number

MFTM-0370-64

© Elemental Scientific | 7277 World Communications Drive | Omaha, NE 68122 Tel: 1-402-991-7800 | sales@icpms.com | www.icpms.com in 🕅 🕲 有 🖻